$(C_{12}H_{18}N)_2[HgCl_4]$

1568

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.01$
R = 0.040	$\Delta \rho_{\rm max} = 1.17 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.040	$\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.45	Extinction correction: none
3928 reflections	Scattering factors from Inter-
280 parameters	national Tables for X-ray
H atoms not refined	Crystallography (Vol. IV)
$w = 1/[\sigma^2(F_{obs}) + 0.02F_{obs}]$	

Table 1. Selected geometric parameters (Å, °)

Hg—Cl3 Hg—Cl2	2.424 (3) 2.430 (3)	Hg—Cl4 Hg—Cl1	2.450 (3) 2.614 (2)
Cl2—Hg—Cl3	115.39 (9)	C11HgC13	107.7 (1)
Cl4—Hg—Cl3	115.8(1)	Cl1—Hg—Cl2	99.18 (8
Cl4—Hg—Cl2	112.3(1)	Cl1—Hg—Cl4	104.16 (9

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	D—H····
N1—H1···Cl4 ¹	0.96	2.70	3.342 (4)	125
N1—H2···Cl4	0.96	2.22	3.159 (6)	166
N2—H19· · ·C11	0.96	2.17	3.131 (4)	174
N2-H20· · ·C11 ⁱⁱ	0.96	2.29	3.207 (4)	159
0 1 (1)				

Symmetry codes: (i) $-x, \frac{1}{2} + y, -z$; (ii) $-x, \frac{1}{2} + y, 1 - z$.

The origin was fixed by setting the *y* coordinate of the Hg atom to zero. The absolute structure was determined by anomalous dispersion; the opposite enantiomorph resulted in a weighted *R* value of 0.085. All H-atom positions could be determined from the difference Fourier map. However, the calculated positions at a distance of 0.96 Å were used in the final refinement, with a common isotropic displacement parameter, since the calculated distances were more reasonable than the refined ones. The residual density shows six maxima with values ranging from 1.0 to 1.2 e Å^{-3} close to the Hg atom at distances of 1.1 to 1.2 Å. A similar situation is found for the minima. All refinements were performed using a Levenberg-Marquardt least-squares technique (Spengler, Zimmermann & Burzlaff, 1994; Zimmermann & Spengler, 1995; Spengler & Zimmermann, 1996).

Data collection: local software (Gomm, 1993). Cell refinement: local software. Data reduction: local software. Program(s) used to solve structure: *CRYSTAN* (Burzlaff & Rothammel, 1988). Program(s) used to refine structure: *CRYS*-*TAN* (Spengler & Zimmermann, 1996). Molecular graphics: *CRYSTAN* (Burzlaff & Rothammel, 1988). Software used to prepare material for publication: *CRYSTAN* (Burzlaff & Rothammel, 1988).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1221). Services for accessing these data are described at the back of the journal.

References

- Ben Salah, A., Bats, J. W., Fuess, H. & Daoud, A. (1983). Z. Krist. 164, 259-272.
- Ben Salah, A., Bats, J. W., Kalus, R., Fuess, H. & Daoud, A. (1982). Z. Anorg. Chem. 493, 178–186.
- Burzlaff, H. & Rothammel, W. (1988). Proceedings of the CIC Meeting, Tübingen, pp. 415–421. Berlin: Springer-Verlag.
- Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180-182.
- Gomm, M. (1993). Crystallographic Computing 6, pp. 1–10. Oxford University Press.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Spengler, R. & Zimmermann, H. (1996). 4. Jahrestagung der DGK, Referate. Z. Krist. Suppl. Issue No. 11, p. 48.

- Spengler, R., Zimmermann, H. & Burzlaff, H. (1994). ECM-15. Book of Abstracts. Z. Krist. Suppl. Issue No. 8, p. 603.
- Spengler, R., Zouari, F., Ben Salah, A. & Burzlaff, H. (1997). Acta Cryst. C53, 1407-1409.
- Zimmermann, H. & Spengler, R. (1995). 5. Jahrestagung der DGK, Referate. Z. Krist. Suppl. Issue No. 9, p. 387.
- Zimmermann, S., Lange, J. & Burzlaff, H. (1995). 4. Jahrestagung der DGK, Referate. Z. Krist. Suppl. Issue No. 9, p. 388.

Acta Cryst. (1997). C53, 1568-1570

A New Gallium Phosphate Tem-A plated by Tris(2-aminoethyl)amine: [Ga(HPO₄)(PO₄)(OH)].[(C₂H₇N)₃N].H₂O

FABIEN SERPAGGI, THIERRY LOISEAU AND GÉRARD FÉREY

Institut Lavoisier – UMR CNRS 173, Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles CEDEX, France. E-mail: loiseau@chimie.uvsq.fr

(Received 20 March 1997; accepted 4 July 1997)

Abstract

The title compound, $bis(\mu$ -phosphato-O:O')bis[(hydrogenphosphato-<math>O)(hydroxo)gallium] tris(2-aminoethyl)amine hydrate, was hydrothermally synthesized, in the presence of tris(2-aminoethyl)amine (tren), from a nonaqueous mixture in which dimethyl sulfoxide was used as solvent (423 K, 24 h, autogeneous pressure). Its structure consists of isolated hexameric units composed of two GaO₄ and four PO₄ tetrahedra, these units being separated by the tren and water molecules.

Comment

Since the synthesis of a new series of microporous aluminium phosphates (Wilson, Lok, Messing, Cannan & Flanigen, 1982), a large number of novel threedimensional open-framework compounds has been characterized. Phosphate-based materials are generally prepared from aqueous hydrothermal systems in the presence of an organic amine or a quartenary ammonium as a templating agent. Recent works report the synthesis from organic or mixed solvents in which the water is a minor component (Huo & Xu, 1990). The control of the water content in combination with the use of both a non-aqueous solvent and a mineralizing agent has led to large-crystal materials with dimensions in the size range 0.4-5.0 mm (Kuperman, Nadimi, Oliver, Ozin, Garcés & Olken, 1993). These studies mainly concern the use of alcoholic solvents such as glycols or linear-alkyl alcohols. Our work is focused on the synthesis of phosphates by using dimethyl sulfoxide (DMSO), an aprotic solvent, with hydrofluoric acid (Loiseau, Serpaggi & Férey, 1997). We report here the preparation of a new gallium phosphate, $[Ga(HPO_4)(PO_4)(OH)].[C_2H_7N)_3N].H_2O$, in a DMSO-H₂O mixture in the presence of tris(2-aminoethyl)amine (tren).

In the purely aqueous system, with the tren molecule, a layered fluorinated gallium phosphate, ULM-8, has already been produced (Serpaggi, Loiseau, Riou, Férey & Hosseini, 1994).

Here, the structure consists of isolated hexameric units composed of two Ga- and four P-centred tetrahedra separated by the tren molecule and water (Fig. 1). Each type of tetrahedron is almost regular with Ga-O and P—O distances in the ranges 1.761(4)-1.812(3)and 1.489 (3)-1.578 (3) Å, respectively. The O-Ga-O and O-P-O angles lie in the ranges 105.5 (3)-112.6(1) and 103.5(2)–114.6(2) $^{\circ}$, respectively. The Gal- and P2-containing tetrahedra are corner shared in a strictly alternating manner, giving rise to a square four-membered ring. A second P1O₄ tetrahedron is linked to one of the two remaining free vertices of the GaO_4 tetrahedron. For one part, the cohesion of the structure is ensured in the (100) plane through strong hydrogen bonds between the PO₄ tetrahedra and the three terminal ammonium groups of the or-

Fig. 1. Projection of the structure along the a axis.

ganic molecule $[O1\cdots HN2C = 1.85(1), O1\cdots HN3B = 1.96(1), O1\cdots HN4C = 1.99(2), O2\cdots HN2A = 1.94(2), O2\cdots HN3A = 2.12(2), O2\cdots HN4A = 2.02(1), O3\cdots HN4B = 2.12(2) and O5\cdots HN3C = 1.77(2) Å]. The two terminal non-bonded O atoms, O6 (of the P1O₄ unit) and O9 (of the Ga1O₄ unit), should correspond to hydroxyl groups in order to balance the three positive charges of the tren molecule (this hypothesis is strengthened by the valence-bond analysis). Hydrogen bonds between the water molecule and both the GaO₄ and P2O₄ tetrahedron, <math>OW\cdots$ HO9 and $O3\cdots$ HOW, respectively, complete the cohesion of the structure.

Experimental

The title compound was prepared hydrothermally from a mixture of GaO(OH), H_3PO_4 , HF, tris(2-aminoethyl)amine, dimethyl sulfoxide and water in the molar ratio 1:1:1:0.9:10:13. The resulting mixture was heated at 423 K for 24 h in an autoclave under autogeneous pressure, then filtered, washed and finally dried at room temperature. Examination under an optical microscope indicated a powder corresponding to GaOOH and colourless large crystalline platelets of the title compound. A suitable single crystal was isolated for X-ray diffraction analysis and its quality was tested on Laue photographs.

Crystal data

[Ga(HPO ₄)(PO ₄)(OH)]	Mo $K\alpha$ radiation
$C_6H_{21}N_4.H_2O$	$\lambda = 0.71069 \text{ Å}$
$M_r = 444.72$	Cell parameters from 32
Monoclinic	reflections
$P2_{1}/c$	$\theta = 30-32^{\circ}$
a = 9.4881 (10) Å	$\mu = 1.979 \text{ mm}^{-1}$
b = 10.3231(11) Å	T = 293 (2) K
c = 16.3226(11) Å	Prismatic platelet
$\beta = 90.423 (6)^{\circ}$	$0.418 \times 0.361 \times 0.068 \text{ mm}$
$V = 1598.7(3) \text{ Å}^3$	Colourless
Z = 4	
$D_x = 1.847 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection

Stoe Siemens AED-2 diffractometer $\omega/2\theta$ scans Absorption correction: by integration from crystal shape (Sheldrick, 1993) $T_{min} = 0.864, T_{max} = 0.920$ 2998 measured reflections 2891 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.133$ S = 0.955 1971 reflections with $l > 2\sigma(l)$ $R_{int} = 0.043$ $\theta_{max} = 29.95^{\circ}$ $h = -13 \rightarrow 10$ $k = -8 \rightarrow 13$ $l = -11 \rightarrow 21$ 3 standard reflections frequency: 60 min intensity decay: 5.2%

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.863 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.501 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Vol. C)

2891 reflections	Scattering factors from
211 parameters	International Tables for
All H atoms refined	Crystallography (Vol. C
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Ga1—09	1.761 (4)	P2—O8	1.555 (4)
Ga1—O8	1.798 (4)	N1C1	1.469 (5)
Ga1—O7 ⁱ	1.802 (3)	N1C6	1.473 (5)
Ga1––O4 ⁱⁱ	1.812 (3)	N1C2	1.479 (5)
P1—O5	1.489 (3)	N2C4	1.485 (6)
P1—O1	1.521 (3)	N3—C5	1.476 (6)
P1—04	1.559(3)	N4-C3	1.481 (5)
P1—O6	1.578 (3)	C1—C3	1.520 (6)
P2—02	1.506 (3)	C2C4	1.508 (6)
P2—O3	1.513 (3)	C6—C5	1.510 (6)
P2—07	1.543 (4)		
O9—Ga1—O8	105.5 (3)	O2—P2—O8	111.0 (2)
09—Ga1—07 ⁱ	109.0 (2)	O3P2O8	105.7 (2)
08—Ga1—07 ⁱ	108.4 (2)	O7—P2—O8	106.7 (2)
09—Ga1—O4 ⁱⁱ	112.1 (2)	P1O4Ga1 ^{III}	123.9 (2)
08—Ga1—O4 ⁱⁱ	108.9 (2)	P2-07-Ga1	136.7 (2)
O7 ⁱ —Ga1—O4 ⁱⁱ	112.6 (2)	P2	131.0 (2)
O5P1O1	114.0(2)	C1-N1-C6	111.0 (3)
O5—P1—O4	111.2 (2)	C1—N1—C2	111.1 (3)
O1—P1—O4	109.1 (2)	C6—N1—C2	110.5 (3)
O5—P1—O6	110.2 (2)	N1C1C3	111.8 (3)
O1-P1-06	108.3 (2)	N1C2C4	111.6 (3)
O4P1O6	103.5 (2)	N4-C3-C1	111.5 (3)
O2—P2—O3	114.6 (2)	N2C4C2	112.5 (4)
02—P2—07	110.1 (2)	N3-C5-C6	111.1 (4)
O3—P2—O7	108.4 (2)	N1-C6-C5	112.4 (3)

Symmetry codes: (i) 1-x, -y, 1-z; (ii) x, $\frac{1}{2}-y$, $\frac{1}{3}+z$; (iii) x, $\frac{1}{2}-y$, $z-\frac{1}{2}$.

The structure was solved by direct methods (SHELXS86; Sheldrick, 1990): one Ga and two P atoms were first located and all the remaining atoms, except the H atoms of the HPO₄ and HGaO₄ groups, were revealed from the difference Fourier map. The Fourier map analysis indicates three residues around the three terminal N atoms corresponding to three ammonium groups. No residue was observed around the central N atom. All H atoms, except those of the water molecule, were refined with restraints applied to maintain C-H and N-H geometry.

Data collection: DIF4 (Stoe & Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe & Cie, 1988b). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: DIAMOND (Brandenburg, 1996).

The authors thank Professor M. Leblanc (Université du Maine) for the X-ray data collection and Rhône Poulenc for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DU1179). Services for accessing these data are described at the back of the journal.

References

- Brandenburg, K. (1996). DIAMOND. Visual Crystal Structure Information System. Version 1.0.4. Bonn, Germany.
- Huo, Q. & Xu, R. (1990). J. Chem. Soc. Chem. Commun. pp. 783-784.
- Kuperman, A., Nadimi, S., Oliver, S., Ozin, G. A., Garcés, J. M. & Olken, M. M. (1993). Nature, 365, 239-242.
- Loiseau, T., Serpaggi, F. & Férey, G. (1997). Chem. Commun. 1093-1094.
- Serpaggi, F., Loiseau, T., Riou, D., Férey, G. & Hosseini, M. W. (1994). Eur. J. Solid State Inorg. Chem. 31, 594-604.

© 1997 International Union of Crystallography Printed in Great Britain - all rights reserved

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Wilson, S. T., Lok, B. M., Messing, C. A., Cannan, T. R. & Flanigen, E. M. (1982). J. Am. Chem. Soc. 104, 1146-1147.

Acta Cryst. (1997). C53, 1570-1572

Tris(2,2'-bipyridyl-N,N')zinc(II) Thiosulfate Heptahydrate

SERGIO BAGGIO,^a MARIA I. PARDO,^a RICARDO BAGGIO^b AND MARIA TERESA GARLAND^c

^aUniversidad Nacional de la Patagonia, Sede Puerto Madryn and CenPat, CONICET, 9120 Puerto Madryn, Chubut, Argentina, ^bDepartamento de Física, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina, and ^cDepartamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile, E-mail: baggio@cnea.edu.ar

(Received 11 February 1997; accepted 10 June 1997)

Abstract

The structure of the title compound, $[Zn(C_{10}H_8N_2)_3]$ - $S_2O_3.7H_2O_3$, consists of cations, $Zn(bipy)_3^{2+}$ (where bipy is bipyridine), and anions, $S_2O_3^{2-}$. There is an unusually short S...S contact of 3.361(3) Å between the anions and a complex hydrogen-bonding scheme involving the seven molecules of water of crystallization.

Comment

The present work is part of a larger study of the preparation and structures of thiosulfates of Cd and Zn with the organic ligands phen, dmph or bipy (where phen is 1,10-phenanthroline, dmph is 2,9-dimethyl-1,10phenanthroline and bipy is bipyridine), which have been the subject of our interest in the last few years.

The compounds $[Zn_2(phen)_3(S_2O_3)_2]$, (1) (Baggio, Baggio, Pardo & Garland, 1996), and $[Zn(S_2O_3)-$ (dmph)]₂NaHO.CH₃OH.5H₂O, (2) (Baggio, Pardo, Baggio & Garland, 1997), show different modes of coordination of the $S_2O_3^{2-}$ ion. In (1), the structure consists of [Zn(phen)₂]²⁺ cations and [Zn(phen)(S₂O₃)₂]²⁻ anions, with the thiosulfate group bonded to the metal through sulfur. In (2), the thiosulfate acts as a bidentate and bridging ligand with sulfur binding to Zn^{2+} and an oxygen to Na⁺, thus giving a ten-membered ring structure.